24,045 research outputs found

    Microlensing path parametrization for Earth-like Exoplanet detection around solar mass stars

    Full text link
    We propose a new parametrization of the impact parameter u0 and impact angle {\alpha} for microlensing systems composed by an Earth-like Exoplanet around a Solar mass Star at 1 AU. We present the caustic topology of such system, as well as the related light curves generated by using such a new parametrization. Based on the same density of points and accuracy of regular methods, we obtain results 5 times faster for discovering Earth-like exoplanet. In this big data revolution of photometric astronomy, our method will impact future missions like WFIRST (NASA) and Euclid (ESA) and they data pipelines, providing a rapid and deep detection of exoplanets for this specific class of microlensing event that might otherwise be lost.Comment: 8 pages, 7 figures, accepted to be published in The Astronomical Journa

    Hilbert Space of Isomorphic Representations of Bosonized Chiral QCD2QCD_2

    Get PDF
    We analyse the Hilbert space structure of the isomorphic gauge non-invariant and gauge invariant bosonized formulations of chiral QCD2QCD_2 for the particular case of the Jackiw-Rajaraman parameter a=2 a = 2. The BRST subsidiary conditions are found not to provide a sufficient criterium for defining physical states in the Hilbert space and additional superselection rules must to be taken into account. We examine the effect of the use of a redundant field algebra in deriving basic properties of the model. We also discuss the constraint structure of the gauge invariant formulation and show that the only primary constraints are of first class.Comment: LaTeX, 19 page

    Magnetovac Cylinder to Magnetovac Torus

    Get PDF
    A method for mapping known cylindrical magnetovac solutions to solutions in torus coordinates is developed. Identification of the cylinder ends changes topology from R1 x S1 to S1 x S1. An analytic Einstein-Maxwell solution for a toroidal magnetic field in tori is presented. The toroidal interior is matched to an asymptotically flat vacuum exterior, connected by an Israel boundary layer.Comment: to appear in Class. Quant. Gra

    Minimal resonances in annular non-Euclidean strips

    Get PDF
    Differential growth processes play a prominent role in shaping leaves and biological tissues. Using both analytical and numerical calculations, we consider the shapes of closed, elastic strips which have been subjected to an inhomogeneous pattern of swelling. The stretching and bending energies of a closed strip are frustrated by compatibility constraints between the curvatures and metric of the strip. To analyze this frustration, we study the class of "conical" closed strips with a prescribed metric tensor on their center line. The resulting strip shapes can be classified according to their number of wrinkles and the prescribed pattern of swelling. We use this class of strips as a variational ansatz to obtain the minimal energy shapes of closed strips and find excellent agreement with the results of a numerical bead-spring model. Within this class of strips, we derive a condition under which a strip can have vanishing mean curvature along the center line.Comment: 14 pages, 13 figures. Published version. Updated references and added 2 figure

    On the differential geometry of curves in Minkowski space

    Full text link
    We discuss some aspects of the differential geometry of curves in Minkowski space. We establish the Serret-Frenet equations in Minkowski space and use them to give a very simple proof of the fundamental theorem of curves in Minkowski space. We also state and prove two other theorems which represent Minkowskian versions of a very known theorem of the differential geometry of curves in tridimensional Euclidean space. We discuss the general solution for torsionless paths in Minkowki space. We then apply the four-dimensional Serret-Frenet equations to describe the motion of a charged test particle in a constant and uniform electromagnetic field and show how the curvature and the torsions of the four-dimensional path of the particle contain information on the electromagnetic field acting on the particle.Comment: 10 pages. Typeset using REVTE

    The solar, exoplanet and cosmological lithium problems

    Full text link
    We review three Li problems. First, the Li problem in the Sun, for which some previous studies have argued that it may be Li-poor compared to other Suns. Second, we discuss the Li problem in planet hosting stars, which are claimed to be Li-poor when compared to field stars. Third, we discuss the cosmological Li problem, i.e. the discrepancy between the Li abundance in metal-poor stars (Spite plateau stars) and the predictions from standard Big Bang Nucleosynthesis. In all three cases we find that the "problems" are naturally explained by non-standard mixing in stars.Comment: Astrophysics and Space Science, in press. New version has one reference correcte
    • …
    corecore